

Lower Santa Cruz River Basin climate analysis progress report

APRIL 2^{ND} , 2018

HSIN-I CHANG

UNIVERSITY OF ARIZONA, HYDROLOGY AND ATMOSPHERIC SCIENCES

hchang05@email.arizona.edu

Physics-based Climate Data [Dynamical Downscaling]: Translating Global Climate Models to basin-scale hydroclimate projections

Global Climate Data (pixel size: 1-2°)

UA-Regional Climate Data [Dynamical Downscaling] (pixel size: 25km)

Basin-scale hydroclimate data (approximately 12.5 km resolution)

Regional Climate Data: Coordinated Regional Climate Downscaling Experiment – North America (NA-CORDEX)

- Allows comparison of physics-based downscaling climate simulations
- Climate Change Scenarios: RCP* 8.5 (Worse Case
 / High Risk Climate)
- Core Datasets: 12

Two of the three selected GCMs are reasonably performing models for North America

Representative Concentration Pathways -

"Scenarios that include time series of emissions and concentrations of the full suite of greenhouse gases...."

							7			_	
	CRCM5 (UQAM)	CRCM5 (OURANOS)	RCA4		RegCM4	WRF	Ca	nRCM4	HIRHAM5		
ERA-Int	0.44° 0.22° 0.11°	0.44°†	0.44		50km 25km	50km 25km		0.44° 0.22°	0.44°	RCP	ECS (°C)
HadGEM2-ES				Г						4.5	4.6
					50km 25km	50km 25km				8.5	
CanESM2	0.44°		0.44).44° 0.22°		4.5	3.7
	0.44°	0.22°†	0.44).44° 0.22°		8.5	
MPI-ESM-LR	0.44°			Г						4.5	3.6
	0.44°† 0.22°†	0.22°†			50km* 25km*	50km† 25km†				8.5	
MPI-ESM-MR				Г						4.5	3.4
	0.44°									8.5	
EC-EARTH‡			0.44							2.6	~3.3
			0.44	L					0.44°	4.5	
			0.44	L					0.44°	8.5	
GFDL-ESM2M				L						4.5	2.4
		0.22°†			50km 25km	50km 25km				8.5	
Access	PoC	PoC	ESGF		PoC	PoC		CCCma	ESGF		
Institution	UQAM	OURANOS	SMHI		lowa State *NCAR	U Arizona		CCCma	DMI		
Modeler	K. Winger	S. Biner	G. Niku	n	R. Arritt *M. Bukovsky	C. Castro, H-I Chang	J.	Scinocca	O. Christensen		

Climate Analysis Metrics from Partner Input

- Extreme event: intensity and frequency
 - Daily precipitation
 - Daily temperature change
- Monsoon onset: timing
 - Five-day running average of daily dew point temperature
- Dry period:
 - Timing
 - Length of dry period before monsoon onset

LSCRB Historic Mean Precipitation [Observation vs Model Simulations]

LSCRB Historic Extreme Precipitation [top 10% monthly value, Model simulations]

August Historic Extreme Temperature [top 10% monthly value, Observation vs Model Simulations]

- Summer temperature trend:
 One model simulation (WRF-MPI) extreme distribution
 shape similar to observation
- The other simulation (WRF-HadGem2) generated extreme categories contrast to observation
- Both models are warmer than observation

December_Historic Extreme Temperature [top 10% monthly value, Observation vs Model Simulations]

- Consistent winter temperature pattern
- One model simulation (WRF-MPI) extreme distribution shape similar to observation
- The other simulation (WRF-HadGem2) generated extreme categories contrast to observation

August Historic Extreme Precipitation [top 10% monthly value, Observation vs Model Simulations]

- Consistent with extreme temperature trend
- WRF-MPI show similar summer extreme shape distribution, as compared to observation
- Both models are wetter than observation

Daily Average Temperature and precipitation PDF [Observation vs Model Simulations] Bias Correction needed

Historic Monsoon Onset Timing [Observation vs Modeled Simulations]:

FIRST DAY SINCE JUNE 1st WHERE 3 DAYS Td > 53 ° F

- Observation: July 3rd
- WRF-MPI: June 21st
- WRF-HadGem2: June 19th
- Models generally produced earlier monsoon start date

Next Step

- Compare physics-based climate downscaled products with statistics-based LOCA data
- Compare historic data with future projections
- Prepare the products for weather generator
- Perform bias correction (a standard exercise to use various input data), methodology and values after bias correction (internal), evaluation of model fit. Can shift the PDF, not changing the distribution.